If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-Y^2-6Y+45
We move all terms to the left:
-(-Y^2-6Y+45)=0
We get rid of parentheses
Y^2+6Y-45=0
a = 1; b = 6; c = -45;
Δ = b2-4ac
Δ = 62-4·1·(-45)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{6}}{2*1}=\frac{-6-6\sqrt{6}}{2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{6}}{2*1}=\frac{-6+6\sqrt{6}}{2} $
| 4g+(6+2g)⋅3=4 | | Y=-9x^2+14x+1 | | xX0.15=100 | | 1/6y-1/3=10/12y+1 | | 20/2(5+5)=x | | (16)^7t=10 | | Y=-9x^2-19x-6 | | 3+3a=4-8a | | 5x=4=8x-8 | | 10x-1=11x+3 | | Y=-2x^2-9x-5 | | Y=-8x^2+20x-9 | | 15–p=1/3p–1 | | X/2+x=14-2x | | Z=-1/3z-(-7) | | 5y(2y-3)=0 | | -2=2+2u | | 10=3/5y | | 5/8=2/x-5 | | 4(0)-2y=2 | | 2=x-7/8x | | 9/6=n/2 | | 9(w+7)=3w+15 | | -8v+44=-5(v-7) | | -8(w-7)=2w-44 | | 91=12x+10(4x) | | n/(n-20=5/(n+2)-(n-1)/(2-n) | | 350−x=200+x | | 0=-6x2-19x-15 | | 1/3x-3/10x-9=0 | | 6x2=-19x-15 | | (n+2)(2-n)n=(n-2)(2-n)5-(n-2)(n+2)(n-1) |